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It is known that one-dimensional lattice problems with a discrete, finite set of 
states per site "generically" have periodic ground states (GSs). We consider 
slightly less generic cases, in which the Hamiltonian is constrained by either spin 
(S) or spatial (I) inversion symmetry (or both). We show that such constraints 
give rise to the possibility of disordered GSs over a finite fraction of the 
coupling-parameter space--that is, without invoking any noqgeneric "fine 
tuning" of coupling constants, beyond that arising from symmetry. We find that 
such disordered GSs can arise for many values of the number of states k at each 
site and the range r of the interaction. The Ising (k = 2) case is the least prone 
to disorder: I symmetry allows for disordered GSs (without fine tuning) only for 
r >/5, while S symmetry "never" gives rise to disordered GSs. 

KEY WORDS: Ising models; disorder: ground states; directed graphs; 
polytypes; third law. 

1. I N T R O D U C T I O N  

The p r o b l e m  of  o rde r  vs. d i so rde r  pe rmea tes  all of  c o n d e n s e d - m a t t e r  a n d  
stat is t ical  physics.  If we ignore  t h e rma l  f luc tua t ions  by  se t t ing T =  0, a n d  
q u a n t u m  f luc tua t ions  as well by  v iewing  m a t t e r  as c o m p o s e d  of  mass ive  
uni ts  i n t e r ac t i ng  via  effective classical  po ten t ia l s ,  we have  a s imple r  
p r o b l e m  which  is still non t r iv i a l .  Here  we w a n t  to cons ide r  the  s imples t  
s u b p r o b l e m  o.f this class: we restrict  o u r  un i t s  to lie o n  a o n e - d i m e n s i o n a l  
chain ,  a n d  a l low t h e m  on ly  a finite, discrete set o f  states,  whose  n u m b e r  we 
call k. We  take  the  ( in teger )  r ange  of  the i n t e r ac t i on  a m o n g  the un i t s  to be 
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r, but do not restrict the interactions to two-body terms. (We will call the 
units "spins.") The Hamiltonian is then of the form 

H = ~ f ( ~ i , ~ i + ,  ..... a i+r)  (1) 
i 

where a; (the spin at site i) has k states which we label 0, I,..., ( k -  1), and 
we assume an infinite chain. 

The question of ordered/disordered ground states (GSs) for this 
problem has already been answered in principle. Radin and Schulman 
(RS) t~l showed that (i) a nondegenerate GS is periodic and (ii) in the case 
of degenerate GSs, there always exists at least one periodic GS. (See also 
Teubner (2~ for a different presentation of the same results for the Ising case 
k = 2 . )  In case (i) the period of the GS is ~<kr; in case (ii), one can specify 
a shortest period periodic GS whose period is again ~<U. 

A simple and pictorial understanding of these results is possible by 
embodying the information contained in the Hamiltonian H in a directed 
graph GIf I (where k and i" have the same meanings as above). This is done 
as follows: (2' 31 nodes of the graph are sets of r spins, each taking one of the 
k values. A directed arc points from node Jl/~ " to node ~ whenever the 
rightmost ( r -  1 ) values of ~4~ agree with the leftmost (r - 1 ) values of ~,~. 
The arc itself may then be uniquely labeled with ( r +  1) sequential spin 
values, which allows us to associate a unique weight (energy) to the arc. 
Specifically, we can take the weight of the arc joining the node 
(O'i, O ' i+ l , . . .  , O ' i + r _ l )  to the node (ai+�91 ai+2,..., ai+r) to be f ( a i ,  a i+l  ..... 
a;+,.). The graph G~r k~ may be viewed as a "machine" which reads a string 
of spins as input, and outputs a string of arc weights, whose sum is the 
energy of the string; hence, in this sense, the graph G~f ) represents the 
Hamiltonian H r  . 

The graph G~r k~ has U nodes and k r + l  a r c s .  Any configuration of an 
infinite chain of spins thus must involve repeated cycles of arcs in G r . All 
cycles in GI. k~ may be decomposed into "simple cycles" (SCs) ~41 having the 
property of non-self-intersection. The result of Radin and Schulman then 
appears in this approach in the following form: (i) If there is a unique SC 
of G~f ~ with the lowest weight per spin, then a repetition of that SC gives 
the nondegenerate GS, whose period (the length of the SC) is ~< the 
number of nodes of the graph, i.e., k". (ii) If there are two or more SCs with 
the lowest weight per spin, then there is always a GS consisting of repeti- 
tions of only one of them, whose period is again ~<k". 

This logic does not allow a reduction of the upper bound of RS. The 
graphs G~ k) are known as de Bruijn graphs; ~5'61 and it is known that the 
set of SCs always includes a "Hamiltonian cycle," that is, one visiting all 
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the nodes. Furthermore, it is clear that case (ii) is "rare": in general--that 
is, without fine tuning of the couplings to precise values--the Hamiltonian 
H does not give degenerate SCs. 

We also note that, in the exceptional case of degenerate (and minimal- 
weight) SCs, the degeneracy may give rise to disordered GSs if the 
degenerate SCs share one or more nodes--since the different SCs may then 
be traversed in any arbitrary sequence with no energy cost. 

Put briefly, we see that, barring fine tuning of the coupling parameters 
of /4 ,  one always has a periodic GS for a k-state model. Given such fine 
tuning, however, one may find an uncountable set of degenerate GS con- 
figurations; in this case, essentially all of these degenerate configurations 
are aperiodic. 

Given this background, we note the following: sometimes, "fine 
tuning" is "generic." By this we mean simply that symmetry in fact does 
tune some parameters to precise values. This suggests the following 
question: might the symmetries of H give rise to disordered, degenerate 
GSs--without any further fine tuning of parameters? 

We offer an answer to this question here. The symmetries we consider 
are two: spin inversion (S) symmetry, and spatial inversion (I) symmetry. 
We choose these two because they are both (particularly the latter) very 
common in physical applications. (We should also point out that our entire 
analysis, like that of RS, assumes translational invariance of the 
Hamiltonian as well; put differently, we are seeking disordered GSs in the 
absence of quenched disorder in the Hamiltonian.) 

2. GROUND STATES, DEGENERACY, AND DISORDER 

We wish to study ground states of infinite chains of spins. Since the 
total energy of an infinite chain is not well defined, some conventions 
are needed, both for describing the configurations of an infinite chain 
and for comparing the energies of distinct configurations. A standard 
approach 1~'7's~ is to compare configurations differing only in a finite 
number of spins; a ground-state configuration is then one whose energy 
cannot be lowered by changing any finite number of spins. Here we follow 
Teubner ~2~ in using an alternative approach: we wish to compare the 
energy densities of different configurations (confining our attention to those 
configurations for which the density, defined as the limit of the energy per 
spin as the chain length N ~  m, is well defined). We then define a ground- 
state configuration as one for which the energy density is minimal. 

It is well known (7" s) that the "standard" definition allows for multiple 
ground states; for example, "standard" ground states for the near-neighbor 
Ising ferromagnet include all configurations with a single domain wall, as 
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well as the defectless ( + )  and ( - )  periodic configurations. The ent ropy 
density of  these defected configurat ions is of  course zero in the ther- 
modynamic  limit. I f  we instead use minimal energy density as our  criterion 
for ground states, we again find multiple ground states for any reasonable 
Hamiltonian.  In the Ising ferromagnet,  for example, one must  include any 
finite number  of  defective spins (which cannot  affect the energy density), or 
even an infinite number,  as long as the defective spins have a vanishing 
density in the limit N ~  oo. However,  a simple a rgument  4 shows that  the 
entropy density of  defects of  vanishing number  density also vanishes. Thus 
the most  impor tant  properties (energy and ent ropy densities, correlat ions) 
of  the multiple g round  states are equivalent to, and represented by, those 
of  the g round  states without  defects. Hence in this paper  (for example in 
the In t roduct ion above),  we sometimes, for brevity, refer to "the" g round  
state (GS) or  ground states (GSs) for a given, specific Hamil tonian,  by 
which we mean those which are free of  defects. (Here, we may  loosely 
define a "defect" as a string of  spins which, if present with finite density, 
raises the energy density; defects will be defined more  precisely below.) 

We are interested in disordered ground states. Clearly, by "disorder" 
we do not  mean the proliferation of  defects (of  vanishing density) which is 
implicit in our  definition of  ground states (as energy-density minimizers), 
and which occurs for even the simplest Hamiltonians.  Instead, we impose 
two criteria for a disordered ground  state. The first is that  the ent ropy per 
spin of  the ground-sta te  configurations should be nonzero.  The second 
criterion is that  the first criterion should hold over a finite ne ighborhood  
of  Hamiltonians;  that is, we exclude disorder arising from the fine tuning 
of  the coupling constants  of  the Hamil tonian  to some precise values. 

We add this second criterion because the coupling constants  of  a 
Hamil tonian  are not  generally under  experimental control ,  and it is 
unreasonable to ask nature to give us precise values. The exception is of  
course the precision coming from symmetry.  The result of  Radin and 
Schulman tells us that we should "never" expect to see disordered ground 
states for 1D, k-state problems. However,  if a symmetry  is exact, then we 

4 Assume that the number of defects grows with increasing number of spins N as some func- 
tion f(N), with the property lim A . . . .  (f/N) =0. Viewing a spin configuration as a path 
through the graph ~t~ G, , we define a defect as a "bad" arc: that is, an arc not on that SC 
which lies at the vertex of PIrk~ minimizing .ge. Then, each time a spin (arc) is added to the 
chain, there are either k - 1 or k bad choices. Hence the number of distinct lists of f bad arcs 
is less than k/. Assuming no freedom in choosing "good" arcs, there are (IN~/~)= (~) choices 
for placement of each list o f f  defects, so that the total degeneracy o f f  defects is less than 
W=k/(~). The entropy density s=(ln W)/N then vanishes as N ~  or. If we assume two 
degenerate SCs such that there are two choices of good arc sequences for each (long) 
sequence between defects, W is multiplied by a prefactor which is less than 2t~ and our 
conclusion s ~ 0 is unchanged. 
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can expect exact relations between coupling constants, giving rise to exact 
degeneracy among periodic configurations, and thus to possible disordered 
ground states by our criteria. Hence, for the purposes of this paper, we 
modify our second criterion: we wish to confine the "finite neighborhood" 
of Hamiltonians to the space of symmetric Hamiltonians. That is, we will 
assume the symmetry is exact, and so holds for any variation of the 
couplings. With this modification, we apply our second criterion to any 
ground-state configuration, disordered or not: it must minimize the energy 
density over a finite neighborhood of symmetric Hamiltonians. 

In seeking to minimize the Hamiltonian density of infinite chains, we 
will heavily use two tools. The first, the graph (7- Ikl has been described v r , 

above. We will find it useful to define and study a modified graph XG~-I for 
the case that the Hamiltonian is invariant under the symmetry X ( --S, I, 
or a combination). Our construction -~ .v,--Ck~ is chosen such that the simple U I  t J  r 

cycles of this graph correspond to the set of defect-free ground-state con- 
X { k � 9 1  figurations which may be realized for any possible Hamiltonian H r of 

the given r and k and symmetry X. This correspondence is identical to that 
shown by Teubner 12~ for the case k = 2 and X =  0 (no symmetry). 

Our second tool is the polytope pil l  and its projection x ~k~ Pr onto an 
X-invariant subspace. This polytope arises as follows. We can write the 
Hamiltonian density as :~C = - ~  J~s~ = - J ' s .  Here s~ is one of the set of 
spin correlations ~2~ of the form (,~P~,~P~§247 where ~ denotes the set ~ i  ~ i q - |  ~ i - t - r / '  

{Pi} [each of which, for i >  1, may take the values (0, 1 ..... k -  1); for i =  1 
we omit p~ = 0  to avoid redundancy].  The angle brackets signify the 
average over the chain, taken in the limit N---, oo. The coupling vector J is 
in general unconstrained; however, the correlation vector s is not. The 
correlations s~ may be written t2~ as linear combinations of the arc densities 
n~,.~,+,.....,,+. The arc density n ,  is the average occurrence of the arc 
a -  {a~ a2.-.a~+~} in a given configuration of spins. Clearly there is one of 
these for each of the k ~+~ arcs; however, ~2) only d =  k " ( k - 1 )  are indepen- 
dent. This latter number is thus the number of independent correlations s,;  
assuming ~ is written without redundant correlations, we find that the 
vectors ,I and s reside in a d-dimensional space. The correlations n,  obey 
the inequalities 0 ~< no ~< 1. These inequalities give rise to inequalities for the 
correlations s,; in particular, the bound n = 0  defines a hyperplane in s 
space, and the set of all such hyperplanes defines a convex polytopd2)PCf ~. 

The simple cycles of the graph Gtf I may be placed in one-to-one 
"~ ( k ) .  correspondence I-~ with the vertices of the polytope P~ . an SC represents 

a point Xsr in s space, satisfying a number of equalities n~ = 0, such that 
any point in a neighborhood of Xsc violates one or more of those equalities 
(by including a finite density of arcs not in the SC). Hence Xsc represents 
the intersection of hyperplanes, such that fewer hyperplanes intersect in any 
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allowed neighborhood of Xsc: it is a vertex of the convex polytope --rP(k)" As 
such, it represents an extremum of ~ = - J ' s  over a finite neighborhood 
of J, and so is a ground-state configuration by our definition. In fact, a 
stronger statement is possible: barring fine tuning of the couplings, 
~ = - J . s  is always-minimized by s at some vertex Xsc. That is, the 
(finite) set of vertices of P~r kJ (which are in one-to-one correspondence with 
the finite set of SCs of (k~ G r ) represents all possible ground states (by our 
definition) for any Hamiltonian of the form H (k~ 

r " 

The above is mostly a review of previous results, obtained by 
Teubner, 12~ who concentrated on the case k = 2 ;  here our discussion is 
generalized to arbitrary k. Now we impose some symmetry X. We then 
have ,vjf = _ j x .  s = - j X . s X ;  that is, as the couplings J are restricted to 
the X-invariant subspace (of dimension dX), in minimizing x j r  we only 
need to consider X-invariant correlations. Ground states of XH~k~ then lie 
at the vertices of the projection x ~k~ P,. of the polytope P(f~ onto the 
X-invariant subspace. Given the convenient correspondence between 
vertices of Ptf) and SCs of GI. k~ in the general case, we are motivated to 

x tk) (including an appropriate definition of its SCs) such seek a graph G r 
that the correspondence is restored: that is, we wish to construct a graph 
XG(,f~ whose SCs may be placed in one-to-one correspondence with the 
vertices of Xp(fl. 

We will then use these tools to answer our question: are there disor- 
dered ground states of x (k) H r by our definition--that is, are there ground 
states of finite entropy density which do not require fine tuning of the 
couplings in XH (other than that due to symmetry) to ensure the 
degeneracy? 

We can give the answer in schematic form here. Some vertices of p~k~ 
will map to points which are not vertices of xpIf~ under the projection. 
These will also not appear as SCs of our XG~), and we need not consider 
them further. Of the remaining SCs of G~ k~, it is obvious that imposing the 
symmetry X will enforce the degeneracy of symmetry-related SCs (pail's of 
SCs, for the symmetries we consider) over the entire X-invariant subspace. 
This leads us to consider three possibilities: 

1. Some SCs map to themselves under X. Thus, when H (i.e., J )  
points toward a vertex corresponding to such a SC, there is only one con- 
figuration without defects, namely, the periodic repetition of that SC. (Here 
we can more precisely define a "defect" as a finite string of arcs which do 
not belong to the set of arcs represented by the SC.) We will call this a 
"periodic" GS. 

2. In some cases, a pair of SCs of G(f j (a pair of vertices of pif)) map 
to a single SC (vertex) under the projection. Now consider a domain wall 
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between the two thermodynamic "phases" represented by the two SCs, and 
assume that its energy is positive, s That is, assume that the domain wall is 
a defect, because it requires arcs not present in either SC: this holds when 
the pair do not share any nodes in Gtr k~. Then, in the ground state, the den- 
sity of these domain walls is zero. This means in turn that there are 
arbitrarily long, periodic sequences of one or the other SC in any ground- 
state configuration. We will call this a "periodic GS, with spontaneous 
symmetry breaking" (SSB). 

3. Finally, consider case 2 with the one change that the domain wall 
energy is zero. This in turn requires that the domain wall use no "defect" 
arcs, i.e., that the two SCs share one or more nodes in Gt,. k~. (This is termed 
"zero surface tension" in Teubner.) ~2~ In this case the ground state is disor- 
dered by our definition: there are 2" undefected ground-state configurations 
(with n = N/p, N the number of spins and p the length of either SC of the 
pair), so that the entropy density is In 2/p (p is of course finite as long as 
K and r are both finite). In this case, we call the ground state "disordered ''6 
and refer to the pair of SCs as a "D-pair" (where "D" is meant to evoke 
"degenerate and disordered"). 

Our search for disordered ground states then becomes a search for 
possible instances of case 3 above: a search for "D-pairs." In the following, 
we will construct xal~-~ and then use it to find the values of k, r, and X fo r  ~ r  

which there are D-pairs. The results (for X =  S and I) are shown in Table I, 
which is the principal result of this paper. A second result is that our con- 

.v [k) struction of G r enables an explicit, algorithmic enumeration of all the 
GSs of a given XH~,.k~. Here and elsewhere, by "all ground states" we mean 
"all the vertices (finite in number) of Xp~,.k~,,, or, equivalently, "all the sim- 
ple cycles of XG~f~." The latter formulation allows us to view the list of GSs 
(vertices) as a list of (undefected) spin configurations, one (or more) of 
which is invariably a minimizer of the energy density. 

A negative domain-wall energy of course leads to a ground state which is a periodic array 
of domain walls. This periodic ground state is represented by a symmetric and non- 
degenerate SC, which is distinct from either member of the degenerate pair between which 
the domain walls are defined. (Cf. Section 7.) The symmetric SC (and hence, the case of 
negative domain:wall energy) is thus simply an example of our first case (1). 

"Calculations of diffraction patterns for D-pairs, with random mixtures of the degenerate 
simple cycles, reveal that in some cases delta-function (Bragg} peaks can still dominate the 
spectrum. In other cases, the spectrum is pure continuousfl  ~ Hence it is possible for this kind 
of disorder to be present, but difficult to detect, in real layered materials. One (perhaps 
essential) aspect of the calculation which allowed the disordered configurations to have 
Bragg peaks was the (common in studies of polytypism) assumption that the spins represent 
relati~,e coordinates for adjacent pairs of layers. 

g22/S4/5-6-15 
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One can of course readily find pairs of SCs in G~ k) which are sym- 
metry-related (hence degenerate under a symmetric Hamiltonian) and 
which share one or more nodes. The problem is then to determine which 
(if any) of these pairs are ground states, by our definition. What we find 
is that the imposition of symmetry, while nicely enforcing the degeneracy 
of pairs of cycles over the entire (symmetric) coupling-parameter space, can 
also--due to the degeneracy of parts of the pairs--suggest the "decomposi- 
tion" of the pair into two or more other cycles, which are not related by 
symmetry, and one of which must be lower #1 energy density than the 
degenerate pair. Decomposition in this sense of a degenerate pair of cycles, 
when it occurs, excludes that pair from our set of GSs of XH. That is, an 
SC of G~ k~ decomposes under the application of X if and only if the corre- 

X (k) sponding vertex of p~k~ fails to map to a vertex of P~ under the projec- 
tion to the X-invariant subspace. 

Hence the search for disordered ground states reduces to the problem 
of finding symmetry-related pairs of cycles which share one or more nodes 
but do not decompose. (We will give explicit examples of decomposition 
below.) Our construction of XGl.k~ and our definition of its SCs are 
designed to solve this problem. Below we show in detail how this is accom- 
plished, for various combinations of spin (S) and space (I) inversion 
symmetry. 

3. SP IN  I N V E R S I O N  (S)  

By spin inversion for k-state problems we mean the following: the 
states, which we formally label (0, 1 ..... k - l ) ,  map under S to 
( k - 1 ,  k - 2  ..... 0). Nodes, arcs, and cycles of the graph GI. k~ also map to 
their spin-inverses: ~U--, ~IF, arc ~ arc, and ~Tc~ cyc. We recall that the 
energetics of our discrete problem is reflected in the weights w assigned to 
the arcs of the graph G~,.k~; the symmetry of H is then reflected in 
w(arc) = w(a--Vg) and hence w(cyc)= w(~-vfi?). 

The ground states of the symmetric Hamiltonian SH are the vertices 
of the section 7 of PI. k~ defined by the lower dimensional space which is 

s (k) Pr invariant under S; we call this section Pr - The vertices of s ~k~ 
correspond either to a symmetric SC or to an S-related pair of SCs. In the 
latter case, if the pair shares one or more nodes, it will give rise to an 
uncountably infinite set of degenerate GSs, "most" of which are disordered 
mixtures of the two SCs. 

7 Strictly, the pertinent lower dimensional object is the projection of P~~ onto tim invariant 
hypersurface defined by the symmetry. However, one can show, using the symmetry and 
convexity properties of p~k~, that the projection is the section. 
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a a 

b c 

b 

(b) 
a d 

Fig. 1. The graphs (a) G~ ~ and (b) SG~'-L Arcs which have equal weight by S symmetry are 
given the same label. Note that the latter graph is isomorphic to G~l -'~ (Fig. 8). 

In  o rde r  to d i scover  which  of  these possibi l i t ies  c an  occur  for a g iven 
(k, r), we w o u l d  like to find a g raph  SG~,.k~ with  the same  proper t i es  wi th  
respect to SH t ha t  G~,. k~ possesses wi th  respect  to H: all GS s  are SCs, a n d  
all SCs are  GSs.  W e  cons ide r  the fo l lowing c o n s t r u c t i o n  8 (Fig.  1 ). We  iden-  
tify the equa l -we igh t  arcs arc a n d  ~ of  G~,. kl wi th  the single arc arc s of  
SG~,.k~; s imi lar ly ,  we merge  the n o d es  ~,F a n d  ~.l 7 to a single n o d e  ~,1 :s.  The  

resu l t ing  g raph ,  for k = 2, has  the nice p r o p e r t y  (as m a y  be guessed f rom 
S (k) T e u b n e r )  ~2~ tha t  SG~,.2)~(is i s o m o r p h i c  to)  --,.-l-G~=l F o r  larger  k, G ,  is in 

genera l  n o  longe r  a de Bru i jn  graph ,  since it inc ludes  para l le l  arcs. 
W e  define a n  SC of  s ~k) G,. in precise a n a l o g y  to a n  SC of  G~, k)" it is a 

cycle which  visits no  n o d e  in  SG~,.k~ m o r e  t h a n  once.  
S {k) N o w  we w a n t  to show tha t  on ly  SCs of  G,  c an  be GS s  of  SH. 

Clear ly  it is sufficient to restr ict  o u r  a t t e n t i o n s  n o n - S C s  of  SG~,.k) which  are 

s We are indebted to Jim Hanson for the following observation. In the language of computa- 
tion theory, the graph G~, k~ is a finite-state transducer whose input is a string of spin values 
and whose output is a string of arc weights. If we disregard its input (the spins) and consider 
the possible out'puts (the possible strings of arc weights) as the language recognized by the 
machine, then G~ k~ is a deterministic, finite-state automaton or DFA. A DFA is "minimal" 
when there is no DFA with fewer nodes which can recognize the same language; and the 
general G~ ~'~ is minimal. Given S symmetry, however, G~ ~ is no longer minimal, and can be 
reduced to a minimal DFA (i.e., one capable of producing the same output strings with 
fewer nodes) which is in fact SG~kJ (or equivalent to it). In contrast, I symmetry in general 
leaves G~ "1 minimal; hence our unconventional approach to /G~rk~ (Section4). See, for 
example, Hopcroft and UllmanJ ~~ 
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(a) 

a/l 

(b) 
Fig. 2. (a) A (schematic) nonsimple cycle of SG(~k~, composed of two simple cycles (SCs) 
whose per-spin weights are marked. (b) How the non-SC appears in G~~: as two, asymmetric 
but symmetry-related, SCs (one solid, one dashed), each of net weight/spin (a+b)/(l+m). 
The single shared node in (a) becomes two symmetry-related nodes . V and .I 7 in (b). The 
asymmetric SCs are never ground states of an S-symmetric Hamiltonian (see text). 

SCs of G~kj since we have already ruled out non-SCs of G~ k) An SC of v r ~ 

G(r k) (visiting no node in G(r k) twice), which is, however, a non-SC of SGr 
will visit at least one node JV "s in SG(rk~ exactly twice (Fig. 2a). In _~G ~k~, this 
nonsimple cycle of SG(,.kJ represents an SC cyc and its partner c-~. 
Schematically (Fig. 2b) we can represent these cycles as 

s : ~ "  b/m a/! , .a 7 , Jg  (2) 

--cyc: ./l 7 b/,,, , v'V" ./I , ~ 7  (3 )  
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Here each arrow represents a path (a composition of arcs), and the 
energy per spin of each path is placed above the arrow. The energy per spin 
of cyc and ~ is then (a+b) / ( l+m) .  It is apparent from Fig. 2b that cyc 
and c-y? together define two other cycles, one with energy/spin aft, the other 
with b/m. We assume that a/l < b/m. We then use the fact that 

a/l < (a + b)/(l + m) < b/m (4) 

s ~k~ SH: to deduce that the non-SC cycc/TUd of G, is not a GS of barring fine 
tuning of parameters (as would be needed to set a/l = b/m), one of the sym- 
metric cycles is always lower in energy density. Alternatively, we say that 
the non-SC cycc/Yy-d decomposes into the two cycles with intensive energy a/l 
and b/m. This conclusion holds without any restriction on the number of 
nodes which may be shared between the a/I and b/m paths--which there- 
fore also may decompose. 

s �91 a r are Hence we find that all cycles of G,. which are not SCs of s t,) 
not GSs of SH. Now we wish to show that all the SCs of SGt,.*~ are GSs of 
SH. It is helpful to recall the generic case first, since the argument is then 
readily generalized to the case of S symmetry. 

We consider the graph G~r k~ and the corresponding polytope _,P~~. The 
vertices of pt,.kj represent extrema of the Hamiltonian J r ,  and hence GSs. 
Since the polytope plkl is defined t2~ by the intersection of a set of 
inequalities (of number nr) on the correlations of .Yf, the faces of P~r *1 are 
a set of n.r equalities. As shown by Teubner ~21 (and as noted above), the 
(in)equalities for the correlations may be derived from the simpler 
(in)equalities for the densities n~. The equality which determines each of 
the nf faces of P~r kl is n~=0.  Hence 17 I is simply the number of distinct 
densities, where "distinct" means "not constrained to be equal." 

Constraints on the densities arise in the following way. Since the 
"flow" in the graph Gt,. k~ is "incompressible," densities for the case where a 
single arc enters a node and a single arc leaves it are forced to be equal. 
This flow-induced constraint must be accounted for in order to count 
correctly the faces of the correlation polytope, t2~ 

Now consider the restriction to H = SH, with corresponding polytope 
S (k) Pr �9 A further constraint on the densities arises when we project p~k~ to 
the lower dimensional, symmetry-invariant subspace. In this subspace, a 
configuration and its symmetry-related partner give rise to the same point, 
since they have the same symmetric correlations. Put more simply, a 
correlation <ffP'o'2P2.--o'Pq> and its symmetry partner (obtained from 
ai--* ~ )  represent the same coordinate in the projected subspace. Since the 
densities represent a linear transformation on the correlations, it follows 
that the densities n~ and ne are also identified in the invariant subspace. 
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Hence n~ and n~ cannot be considered distinct when we work in the 
invariant subspace. 

Now consider an SC of SG',.~~. The argument is essentially the same as 
for the generic case. The (locus of the) SC lies on the surface of Sp~,k~ since 
the SC cannot visit all the arcs of SG~k~. And the distinct (with the above 
constraint, n ,  not distinct from n~) densities of the SC are fixed by the fact 
that the SC represents an tmambiguous path in SG~,.k~. Finally, varying the 
densities from those of an SC again requires violating one or more further 
equalities. Hence, SCs of SG~,.k' are vertices of Sp~,k, and so are GSs of SH. 

Hence we have shown that the SCs of SGC,.k~ are the GSs of SH. Our 
search for disordered GSs now takes the form: when does an SC of SG~rk' 
represent a pair of node-sharing SCs of G~,.k'--a "D-pair"? 

The question in this form can be answered, and the answer is simple. 
An SC of SGC,.k~ represents a D-pair only if it includes an S-invariant node 
t,V'*. Such a cycle (excluding the "ferromagnetic" SC which uses the arc 
~4 r* --* ,.~"*) maps to a pair of cycles in G~,. k' sharing the node ~V'*. All other 
SCs of SG~k' map to either a single, symmetric cycle (of twice the period) 
in G',. k', or to a pair of SCs sharing no nodes. (As shown above, no SC of 
SG',.k' maps to a pair sharing two or more nodes.) 

The graph GI. k~ contains no S-invariant nodes for k even, and one such 
node [consisting of r consecutive occurrences of the invariant spin value 
a * =  ( k - 1 ) / 2 ]  for odd k. Furthermore,  given odd k, there is always (i.e., 
for any r) at least one SC of SG~,.kJ which uses the node ~.V'*. Hence we 
conclude the following: 

For even k, S symmeto' never gives rise to disordered GSs; for odd k 
and for eveo' r, S symmet O' does give rise to disordered GSs. 

4. S P A C E  I N V E R S I O N  ( I )  

4.1. Pre l iminar ies  

The arguments and conclusions with respect to I symmetry are some- 
what more involved than those for spin inversion. However, the basic out- 
line of the argument is the same: we wish to define a graph IG',.kJ whose SCs 
are the GSs o f / H  (that is, the Hamiltonian H constrained to be invariant 
under I). We will then seek D-pairs among the SCs of IG',.k~. The definition 
of ~G~,. k~ and of its SCs will be developed in this subsection, along with a 
number of auxiliary concepts which are useful for the argument. We follow 
this subsection with a search (Section 4.2) for D-pairs, arising from I 
symmetry, in k-state problems with k > 2. Finally, in the last subsection 
(Section 4.3), we treat the special (Ising) case k = 2. 
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We encourage the reader who is not interested in technicalities to skip 
this subsect ion--at  least at first reading. Our conclusions, and the flavor of 
the argument, may be gleaned from reading Sections 4.2 and 4.3 and refer- 
ring to Figs. 3-5. We include this subsection here because it defines and 
explains a number of concepts and terms which are needed for the 
complete argument and which appear  in the subsequent subsections. This 
subsection is itself divided into three parts. Concepts and terminology are 
developed in Section4.1.1, immediately following this paragraph. In 

1 (k) Section 4.1.2 we define the graph G r and its SCs; finally, in Section 4.1.3 
we show that these SCs correspond to the GSs of tH. 

4.1.1. Classi f icat ion Schemes  and Representa t ions .  We 
begin by developing a classification scheme for the nodes and arcs of G~r k~ 
according to their behavior under L All the nodes of G~r k~ may be classified, 
according to their behavior under L into three sets: a "left-handed" set 
given the label L, their space inverses R, and an invariant or symmetric set 
labelled with S. Since the arcs of G~r k~ are in one-to-one correspondence 
with the nodes of a ~k~ the same holds true for the arcs. V r + l ~  

Clearly there are, in general, many ways of choosing the L and R sets. 
Each such choice can be taken as a constraint on how the graph G~r k~ is to 
be represented in a planar drawing (e.g., R nodes on the right, L nodes on 
the left). We are of course most interested in those properties of G~ kl and 
of IG~,.k~ which are independent of the choice of representation. However, we 
will find two types of representation (or rep, for brevity) to be most 
convenient. 

First we define the "recursive" representations. (For  k = 2 and r~< 5 
there are two; in general, there are many.) In these representations the 
handedness of all nodes and arcs of G~,. k~ are determined, as much as 
possible, from the handedness of the arcs of G~,. k~. Hence, one must first 
choose a classification for the arcs of G~ kl. (The nodes, of length r = 1, are 
all inversion invariant and so S.) 

One then exploits a representation-independent procedure ~6~ for 
constructing c/k~ from G ~k~ [Such a procedure gives (by recursion) G~,. k~ v r + l  - - r  " 

for any r, from G~,}~]. The arcs of G~,. k~, representing all the possible k "+ 
sets of r + 1 spins, become the nodes of G ~k~ Arcs of ~k~ then represent - - r + l '  ~ r + l  

adjacent sets of  r + 2 spins, which may be traced back to adjacent pairs of 
arcs in G~,. k~ (where "adjacent" means meeting at a node, with one arc of the 
pair incoming, the other outgoing). 

Our recursive reps then use the following rules. Since nodes of ~k~ ~ r + l  

come from arcs of G(k) v r , we carry the handedness through unchanged. The 
handedness of the arcs of ~ k l  is then determined from that of the corre- V r + l  

sponding arc pairs of G<~ kl as follows: 
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R R  ~ R (5a) 

S R  or RS- - ,  R (5b) 

L L  ~ L (5c) 

S L  or LS--* L (5d) 

SS---, S, L, or R ( =inverse of intervening node) (5e) 

R L  or L R  ~ S ( i fR and L are related by I)  (5f) 

R L  or L R  --* J (otherwise) (5g) 

The last line of course needs clarification. We use the symbol J to 
mean a "joining arc" (JA): an arc that joins an R node to an L node, but 
is not symmetric itself. We note that symmetry, or lack of same, is rep-inde- 
pendent; however, whether or not a given arc is J is rep-dependent, since 
one can always move one of the nodes. Joining arcs will be significant in 
many parts of our discussion of I symmetry. Specifically, the proper treat- 
ment of JAs is an essential part  of our definition of/G~,.kl and its SCs; also, 
the concept of JAs is the simplest way to understand our results for k = 2, 
for which we will distinguish the cases r < 5 from those with r~> 5. Note 
that, for the purpose of proceeding with a recursive rep, the handedness of 
a JA must be chosen arbitrarily to be L or R. 

This completes our description of recursive reps. We now define a 
second type of representation, a "minimal" rep, as follows. In a minimal 
rep the number  ns of JAs is minimized. That is, all minimal reps have the 
same n j ,  and every rep that is not minimal has a larger ns. 

We can always draw the graph G~f ~ in the plane such that it is reflec- 
tion symmetric about  a line J (the reflection accomplishing L *- *R  for 
both nodes and arcs). If  there are no JAs, the line .Y then partitions G~,. kl, 
drawn in this way, into disjoint sets of arcs and nodes, with R and L 
arcs/nodes on opposite sides of J ,  and only S arcs/nodes touching J .  Thus 
i f n s = 0  (in any rep), we call the graph ".Y-disjoint." IflTj :/:0 in a minimal 
rep, the graph is non-J-disjoint .  Obviously, J-disjointness is a property 
which is independent of rep, but most easily ascertained in a minimal rep. 

Not  all minimal reps are recursive. For  example, for the case k = 2, 
and in the absence of JAs, there are only two recursive reps. These two reps 
are trivially related, since there are only two arcs in GI~ 2~ (el. Fig. 8) which 
are not S - - and  they must have opposite handedness. Since the relation of 
the two is trivial, then, as long as JAs do not arise [and so introduce 
ambiguity in going from ( r -  1 ) to r] ,  we can refer to a "single" recursive 
rep for k = 2. We find, by construction, for k = 2 that "the" recursive rep 
is also minimal for all r~<5. [This is the reason for the rule for S S  
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combinations, Eq. 5e.] However, for r = 6 there are multiple recursive reps 
due to the appearance of JAs at r - -5 ;  and no recursive rep is minimal. 
These results, besides demonstrating that minimal reps are not in general 
recursive, will be useful in our discussion of the k = 2 case below. 

4.1.2. The G r a p h  ~G and Its SCs. We now seek the graph qTIkl v r , 

which will serve the same purpose, in the case of I symmetry, as was served 
by SG~,.k~ for S symmetry. Unfortunately, it is impossible (see footnote 8) to 
draw consistently a graph strictly analogous to SGtrk~, that is, a graph in 
which arcs and nodes related by I are identified. 

We can however construct IG~,.k~ by broadening our notion of a graph 
(and of a cycle). We draw G~ kl to be reflection-symmetric about the symmetry 
line J as described above, with L arcs and nodes to the left, R to the right, 
S nodes on J ,  and S (and J) arcs crossing J .  We then c o n s t r u c t  IG~k) by 
simply erasing everything to one side of J (Fig. 3). The resulting "graph" (we 
will drop the quotes) has the odd property that some arcs begin and end on 

1 (k) J ,  rather than on a node. We define a "cycle" of G r to be one of two types: 
(i) a closed path as in a conventional digraph, or (ii) a path which begins and 
ends on J .  A cycle of type (i) will map to two distinct (/-related) cycles in 
Gr k~. A type (ii) cycle becomes a cycle in G~,. k~ by simple reflection about J .  

I (k) Our prescription for G r is still not complete; joining arcs in G*,. k~ 
require special handling. Assume the JA arc connects nodes ,.1~ ~ ,,1~ in 
GO,. k~, that ~Jlrn :# ~'17 L (where ~47 is the spatial inverse of the node ~,t/'), and 
that we want to build ZG~r k~ by erasing the right half of G~,. k~. We then repre- 
sent arc by drawing a heavy line (to distinguish the JA from the non-JAs) 
from Nc to ,AT~ (which is in the left half). Furthermore, in IG~k~ arc is a 

V r  , 

"sink": it leaves both NL and ~ATR. (Had arc entered N L, it would be a 
"source": it would also enter ATR.) The resulting construction is shown in 
Fig. 4, using G~ 2~ as an example. 

This new feature of ~G~,. k~ requires yet further broadening of our defini- 
tion of a cycle. The rule is that two paths flowing (in the same direction) 
from a single source to a single sink also constitute a cycle. We also allow 
the possibility that ~r can act as a source or sink. For bookkeeping, we 
label the paths leaving a source (and entering a sink) with distinct "colors" 
(hence only two colors are needed). We allow further sources and/or sinks 
(i.e., JAs) in each path--with the path changing color (and apparent direc- 
tion) when crossing a JA--with the constraint that the colors must match 
at every node that is neither source nor sink. 

Clearly, a type (i) (closed in ZGt,. k~) cycle which does not touch .~r must 
then include an even number of JAs, so that the path directions (colors) 
match everywhere away from the JAs. A type (ii) can include an odd 
number, in which case it uses J either as a source or as a sink. 
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i 

9 

(a) 

b 

Fig. 3. (a) Gq,)~; (b) ;G~,fL The latter is obtained from the former by removing everything to 
the right of a vertical line of symmetry ( . f)  in G~ t~; arcs can then begin and end on this line, 
as seen in (b). See the text for a definition of cycles and simple cycles of IG~kL 
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Fig. 4. (a) G~21: (b) tG~"L Note the appearance of the joining arcs (JAs--asymmetric arcs 
crossing the central line of symmetry) in both (a) and (b); in the latter, JAs appear as heavy 
lines with double arrowheads. 
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I ( k )  Since sources and  sinks in G r merely a m o u n t  to cross ing J in G ~k) ~ r  
I ( k )  it is perhaps  clear  that  our  specif icat ion of  cycles of  G r will yield, upon  

"unfolding"  to GI. k~, cycles of  the la t ter  as well. 
This comple tes  our  cons t ruc t ion  of  lGl.k), including the definit ion of  its 

cycles. However ,  we still need an a p p r o p r i a t e  defini t ion of  a simple cycle of  
- - r  �9 1 ( k )  the g raph  ZG~) We will classify the SCs of  G r into four topo log ica l  

types. Fi rs t  we cons ider  those that  use no sources or  sinks, i.e., a single 
color.  Such SCs include (1) a s imple closed loop  in IGl.kl, which does not  
touch J (Fig.  5a); (2) the same as (1), except one node  (and only one)  is 
on J (Fig. 5b); and  (3) a non-self- intersect ing pa th  from one node  on ~r 
to ano the r  (Fig. 5c). 

We now cons ider  SCs using one or  more  sources/s inks.  We can add  an 
even number  of  JAs to a type  (1), and  will include the resul t ing SCs in 

(a) 

L 

(b) 

Fig. 5. The SCs of IGOr'J, presented in schematic form as four topological types. In each case 
the symmetry line J is marked by a vertical dashed line. (a} A type (1) SC. (b) A type (2) 
touches .f at a single node. (c) A type (3). (d) A type (4) SC. This is an example of an SC 
consisting of two paths ("red" and "blue") running from source to sink. The red and blue 
touch at one or more contiguous nodes (an RBC, marked by a single large dot) in the center. 
(e) A type (2) which uses .J as a source and has an RBC {the upper heavy line) which 
includes d.  
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type (1). A type (2) can add an even number of JAs by having only one 
color at J ,  or an odd number by having ,Y serve as source or sink. The 
same holds true for type (3). 

The final step is to consider allowing paths of differing color to touch. 
Such a rule makes sense, since, when unfolded, such paths are on opposite 
sides of GI. kl and so do not intersect in G f  I. Assume two paths of different 
color ("red" and "blue") touch in a contiguous sequence of nodes. Call this 
part a "red/blue contact" or RBC. We allow only a single RBC in an SC 
of q-;,~k~, furthermore, there are constraints on how the paths terminate 
(meet) at each end. The red and blue paths may diverge before annihilating 
at a JA in/G~,.k~--but, once diverged, may not recontact, by the "one-RBC" 
rule. In contrast, if, at either end, the two annihilate at J ,  then no separa- 
tion of the two is allowed; that is, the RBC must include J .  

How do these new possibilities alter our topological types? We add a 
single RBC to type (1), "pinching" it somewhere such that red meets blue. 
We call the result type (4); it is an RBC terminated by JAs at both ends 
(Fig. 5d). By the above rules, we can only pinch a type (2) starting from 
J ;  the result.is still a type (2), but with an RBC "neck" of more than one 
node (Fig. 5e). Finally, we can either pinch a type (3) not at all, or 
everywhere--however, a type (3) that is all RBC is equivalent to one which 
has no RBC. Thus, the addition of RBCs augments our list of topological 
types of SCs by one. 

An important feature of our types ( 1 )-(4) is that they are independent 
of the representation chosen for the graphs G~f ~ and i ~k~ G , . .  Changing the 
rep amounts to exchanging the handedness of pairs of nodes, and allowing 
the arcs to follow. For any given SC, the effect of changing the rep is to 
change the number of JAs in the SC by an even integer. One simple way 
to see that our types are invariant under such changes is to unfold each one 
into the full graph G~,. k~. The four types then appear as (1) two noninter- 
secting loops (2) two loops joined at one node (or series of contiguous 
nodes) (3) a single loop, and (4) a structure which may be viewed as two 
loops, joined at two distinct nodes (or series of nodes). Changing reps then 
amounts to moving nodes (i.e., across J ) - - a  process which cannot change 

1 (k) the topology, either in G f  ~ or in G r . 
Our specification of SCs of ~G~,. k~ is considerably more involved than 

that for SG~,.k~. This is because of two complications: the treatment of J as 
a node, and the use of two colors, with the consequent possibility of RBCs. 
However, our overall criterion for an SC of IG~,.k~ is the same as that for an 
SC of SG~,.k~ or of Gl.k~: an SC  o f  lG~,. k) is one for  which there is no ambiguity 
as to which arcs o f  IGI. k) are to be traversed. As we will see, it is this "no- 
ambiguity rule" (implicit in the above detailed rules) which prevents SCs of 
~GI. k~ from decomposing. 
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Our definition of IG~,. k~ and its SCs is complete. We now proceed to 
1 (k) IH. show that the SCs of G r are the GSs of 

4.1.3. SCs of t G = G S s  of IH. First we show that non-SCs of 
~G~,. ~ are not GSs of ~H. Our specification of SCs of ~GI,. k~ as a list of 
possibilities amounts to forbidding three things: (i) self-intersection with 
the same color, (ii) more than one RBC, or (iii) improper termination of 
a single RBC. We next consider violating these three prohibitions, in order. 
Our goal is to show that violation of any of (i)-(iii) means the resulting 
cycle is not a GS of ZH. 

(i) Assume self-intersection by paths of the same color in a cycle of 
IG~,.k~. We recall that cycles of IG~,. k~ in general give rise to pairs of cycles of 
G~,. k~, with the two members of the pair related by I. Clearly, a necessary 
condition for a cycle of tG~,. k~ to be a GS of tH is that the resulting pair in 
GO,. k~ be a pair of SCs (related by I). The pair must also not decompose, in 
the sense described in Section 3 (on spin inversion symmetry). 

Most cases of violation of (i) will give pairs in G which are not SCs 
and so fail the first test. An exception is a same-color contact occurring on 
.,4 as shown in Fig. 6a. (This represents a same-color contact because .~r is 
a single "node," which here is visited twice.) This type of cycle unfolds in 
G as shown in Fig. 6b, and decomposes into two symmetric cycles in a 
manner similar to that seen in the case of S symmetry. A variation on this 
violation, which also represents (and also decomposes to) a pair of type (3) 
SCs in ~G~,. kl, is shown schematically in Figs. 6c and 6d. 

(ii) Consider a cycle of ~G~,. kl with two RBCs. We suppose that 
the two RBCs, which are connected by a red/blue "bubble," are terminated 
by a JA at one end (a "stirrup"--cf. Fig. 7a) and by J at the other. The 
resulting set of arcs in G (Fig. 7b) may be viewed, with some care, as a 
symmetry-related pair of SCs, of intensive energy (a + b + c)/(l + m + 17). 
However, because the no-ambiguity rule is violated, this pair also defines 
two other (symmetric) SCs of (intensive) weight ( 2 a + c ) / ( 2 l + n )  and 
(2b + c)/(2m + 17), respectively. Now assume the pair represented by Fig. 7a 
is a GS, so that 

a + b + c  2 a + c  a + b + c  2 b + c  
- - < - -  - - < - -  (6) 
l + m + n  21+17'  l + m + n  2m+77 

If we multiply out each of these inequalities (assuming l, m, and n positive), 
we obtain a contradiction. Hence the non-SC in Fig. 7a cannot be a GS; 
it decomposes (Fig. 7c and 7d). The same arithmetic and conclusion, with 
slightly different pictures, apply when the pair of RBCs is terminated by 
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(a) 
I 

i 
i 

i 

(b) 
I 

r ( 1 , ' ) .  Fig. 6. (a) A non-SO of IGl*~ (schematic). (b) The appearance of (a) in G r , compare 
Fig. 2b. Again the asymmetric SCs, of weight (a + b)/(l+ in), are never ground stales when H 
is I-symmetric Note that changing the relative direction of the two pieces in (a) [or  in (c)] 
leaves the logic unchanged. (c, d): Same as (a, b), except there is a JA in part of the cycle. 
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~22/84/5-6~ 



(a) 

i 

(b) 

Fig. 7. (a) A cycle of tG~k~ with two RBCs. (b) We view (as always) the cycle of tG~r~" [in 
(a)] as representing two symmetry-related cycles in G~ ~J, shown here. Where the two cycles 
differ, one is dashed and the other solid. We take the net intensive weight of all arcs outside 
the "bubbles" to be chl--which is the same for both cycles by symmetry. Each of the two 
cycles is an SC of G~ ~~ but neither is a GS of tH (see text). (c, d) The decomposition of the 
cycle of (a) to two [type (2)] SCs of IG~k~, each with a single long RBC. Both (c) and (d) 
represent GSs of tH. 
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(c) 

f 

(d)  

Fig. 7 (contimled) 

stirrup + stirrup, or by ,~r + J .  Therefore, any SC of G~,. k~ which is not an 
SC of IG~,.k~ by virtue of violation of (ii) is not a GS of ~H. 

(iii) We finally consider improper termination of an RBC, by 
divergence before termination on J .  It is easily seen by simple sketches 
that, regardless of the other termination of the RBC (stirrup, or properly 
on J ) ,  the resulting pair are not SCs of G and so fail to be GSs of tH. 

Summarizing the above, we find that, for any conceivable violation of 
the rules for an SC of ~G~,.kL the resulting cycle is not a GS of ~H. Turning 
this around, we find that all GSs of ~H are SCs of IG. 

We note in passing that Morita ~'t~ previously obtained results which 
foreshadow ours. Morita assumed I symmetry of H, and found necessary 
conditions for cycles of G to be GSs of /H.  In our language, Morita found 
that such allowed cycles must touch ,J no times [types (1) and (4)], or 
once [type (2)],  or, if twice, must be/-symmetr ic  [ type (3)]. These condi- 
tions, which are satisfied by our SCs, are not sufficient to ensure a GS. 
Specifically, Morita's rules encapsulate our rule (i) (no same-color 
contact), but fail to capture (ii) and (iii) (which give constraints on RBCs). 

Finally, we need the converse: that all SCs of IGI# ~ are GSs of ~H. Here 
the argument is essentially unchanged from that for the case of S sym- 
metry: densities (arcs) related by I are considered not distinct, and it 
readily follows that SCs of ~G~ kl are vertices of ~P~,.k~--the intersection (see 
footnote 7) of p~.kl with the I-invariant subspace. 
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4.2. k > 2  

We are now ready to seek D-pairs in ~G~k)--r . To this end we can use our 
established classification of the SCs of ZGl. k) into four types. A type (1) SC 
(Fig. 5a) gives rise to a pair of nonintersecting SCs in G. Such a GS thus 
represents spontaneous breaking of I symmetry (SSB), but not a D-pair. 
All type (2) SCs represent D-pairs in G(f ), sharing one (Fig. 5b) or more 
(Fig. 5e) nodes which straddle the symmetry line J .  Type (3) SCs of ~G 
(Fig. 5c) map to symmetric SCs of G, and so are not D-pairs. Finally, type 
(4) SCs (Fig. 5d) give D-pairs sharing one or more nodes which do not 
touch J .  

Hence our search for D-pairs is a search for SCs of type (2) or (4) in 
tG. We first consider r - -  1. For this case, all nodes are on J .  Hence all SCs 
of IG(ik) are of type (3), and there are no D-pairs. 

We now use the fact that (in this subsection) k > 2, and consider r > l, 
in a recursive rep. In this case, there are always SCs of G whose nodes are 
of the form L...LS (where ... is a string of L's). Specifically, a cycle of the 
form LJS (nodes) in G(f ) may be built, in a recursive rep, from a cycle in 
G() k) whose arcs (all nodes being S) take the form LJ-("-2)S  r-~. The 
/-partner of such an SC in G(f ) is then of the form RJS. A pair of SCs of 
G of this form is a type (2) SC of ZG, with a single node (and a single color) 
at .>r and the pair is a D-pair. For example, in G~ 3), one can build L L L S  
(nodes) SCs from L L L S  (arcs) of G(I3); these form D-pairs in G(~ 3) with 
their partners RRRS.  There are three such pairs--(2210)/(0122), 
(2110)/(0112), and (2100)/(0012)--as may be seen in Fig. 3b. For  larger k 
and/or r, the number of such D-pairs increases (and other types appear). 
Hence we find that: 

Disordered GSs occur in the case o f  I symmetry for any k-state problem 
with k >1 3 and r >1 2. 

4.3. k = 2  

The Ising case ( k = 2 )  has some special properties. In particular, G(] 2) 
(Fig. 8) has a single L arc and a single R arc. This makes it impossible to 
make any cycle in G() z) in which an L arc follows another L (similarly with 
R), so that our above argument by construction, using a recursive rep for 
k > 2, fails for k = 2. In fact, even with multiple S arcs [(11) or (00)] after 
a given L, it is clear that the first non-S arc after the L must be an R. In 
other words, all cycles of G] 2), of any length, are of the form 

�9 . . R . . . L . . . R . . . L . . . R . . . L . . .  ( 7 )  

where ... is a string of S's of any length. 
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Fig. 8. G~ 2). The choice of handedness for the two nonsymmetric arcs of G~ t') is really no 
choice, since the two must be opposite. Hence, until JAs occur at r = 5, there is effectively only 
one recursive rep for k = 2. 

F r o m  this we can deduce another  proper ty  which is peculiar to the 
Ising case in the recursive rep. The proper ty  (7) implies that  every cycle of  
G~ -') [except the two ferromagnetic cycles (1) and (0)] crosses J an even 
(/> 2) number  of  times. One can easily show that  the same is true for GI,. 2~, 
for any r~< 5, in the recursive rep. 9 We then note the following: (i) the 
recursive rep is a minimal rep for r~< 5; (ii) in the recursive rep, Gtr 2~ has 
n s = 0  for r < 5  and n s > 0  for r~>5; and (iii) hence G~r "-~ is ,C-disjoint for 
r < 5  and non-,C-disjoint for r = 5 .  (These statements may  be verified by 
explicit const ruct ion of  the recursive rep.) 

Our  "even-crossing rule", plus (i)-(iii) of  the previous paragraph,  suffice 
to ensure that  there are neither D-pairs nor  SSB (of  I)  in Gt,. 2) for r < 5, as 
follows: Type (1) cannot  occur in the recursive rep due to even-crossing 
plus J-dis jointness ;  hence it cannot  occur in any rep. Type (2) is similarly 
ruled out. Type (4) requires JAs; this type is ruled out  by (iii) for r < 5 .  
Thus all SCs -o f  z~12) for r < 5 ,  are of  type (3 ) - - symmet r ic  cycles of  G v r 

- - a n d  hence represent neither D-pairs nor  SSB. 
We next consider the case r = 5 .  Here we find four JAs (Fig. 4) in the 

recursive rep (which is still minimal). The presence of  these JAs is sufficient 

0 For r>5 there are multiple recursive reps (due to the appearance of JAs at r=5). We 
conjecture (but do not need for our argument) that the even-crossing property holds in all 
recursive reps, even for r > 5. 
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to allow three of  the four types of  SCs in tG~2~. For  example,  a type (2) SC 
and its unfolding are shown in Fig. 9. An example  (the only one) of  SSB 
in G~ 2t is the pair  (101100) and its inverse (001101 ); this pair  gives a type 
(1) SC of  IG~'-~ which uses both  of its JAs. 

Given that  G~,. -'~ is non-J -d i s jo in t ,  one can show that  ~,.+~2~ is also. (In 
fact, this is true for any k. m) Fur thermore ,  even in a minimal  rep, n j  
increases with increasing r. The  result is that  types (1)- (3)  occur  for all 
r>~5. We also find (aided by a compu te r  search) that  type (4) D-pai rs  ~j 
occur  for r~> 7. Hence we find that: 

Both SSB and disordered, degenerate GSs occur hi the Ish~g problem 
with I symmeto, for r >>- 5. Neither occurs for r < 5. 

5. C O M B I N E D  S Y M M E T R I E S  

5.1. SI Symmetry  

SI  symmet ry  may  be handled very much  like I. (The symmet ry  line in 
this case is a horizontal  line ,~P,~r through the center  of  the graphs.)  Here  
we just  note the conclusions. The results for k -  2 are the same (an "even- 
crossing rule" in the recursive rep, non-5 / ' J -d i s jo in t  for r>~5, and 
disordered GSs for r~>5). G~,. 31 is non-SP~C-disjoint for r>_-3; G~,. kJ is non-  
,9~ for any k / > 4  and r i> 1. There  are disordered GSs  for any 
k>~3 and r~>l .  

5.2. (S+ I )  Symmetry  

We finally consider the case where bo th  S and I are good symmetr ies  
of  H. We construct  the graph S§ by applying I symmet ry  to SG~,.k~ 
(erasing half  of  it, and correcting for JAs). We can then use a rguments  like 
those above  to show that  the SCs of S+~G~,.k~ (defined similarly to those of  
/ (A') G~ ) are the GSs of S+IH. (In part icular ,  the same a rguments  used in 
Section 4 to eliminate SCs of G~,. k~ which are not SCs of  ~G~,. k, m a y  be used 
to el iminate SCs of  SG~,.k~ which are not SCs of  S+IG~,.k~; and the usual 
a rgument  shows that  all SCs of S+tGI,.k~ are GSs  of  S+~H.) 

For  what  values o f r  and k do we find disordered GSs of  S+~H? Again 
we just  give our  conclusions here. Combin ing  the two symmetr ies  

to We find that G~r 3~ is non-,C-disjoint for r~>4 and G~ t~ is non-.J-disjoint for any k~>4 and 
r~>2. 

~ An example is the cycle (0001001101000110111 I and its inverse in G~7 ~, which has a single- 
node RBC in ZG~z 2j. We find type r SCs for k = 3, r/> 4 and for r = 4, r/> 3 ), I k = 5, r >/2), 
and (k=6, r~>2). 
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( b )  - 

Fig. 9. (a) A Drpair (heavy solid and heavy dashed lines) " 12) m G 5 . Such a pair of  cycles gives 
rise to a degenerate set of configurations, including disordered ones, which are GSs over a 
finite volume of coupling-parameter space. (b) The appearance of the two SCs of (a) as a 
type (2) SC in t ~2~ G~ . The two "legs" going from the symmetry line ,,r to the JA have different 
"colors" (here represented by solid vs. dashed lines). 
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eliminates some D-pairs and creates others. With one exception, however, 
we find that, wherever (in r and k--see Table I below) S or I alone gives 
disordered GSs, the combination S + I  also gives disordered GSs. The 
exception is G~5 -'~. Here we find (as noted above) that SG~'-~ ~ G~ "-~. Since the 
latter graph has no D-pairs, application of I to SG~2~ gives a graph 
S+tG~'-I~ tG] 2~ which also has no D-pairs. We note finally that S + I  does 
not give disordered GSs where neither S nor I does. 

6. AN E X A M P L E  

We give here a simple example to illustrate the above logic. The 
simplest case which gives D-pairs (see Table I below) is k = 3, r = 1, with 
X =  S. We give both G~I 3~ and SG~3~ in Fig. 10; for convenience, we let the 
three states [formally labeled (0,1,2)] take the values + 1, 0, and - I  (so 
that Sa = - a ) .  The dimension of H is d =  6. The independent correlations 
a r e  s, = ( a z ) ,  s2 = (~ri(Ti +1 ) ,  '$'3 =" ~ 0"~O'~+ I ) ,  $4 : ~ a ) ,  S 5 : ~ O'~ O" i +1 ) ,  and 
s6 = (aia,--'+ 1), and the Hamiltonian density is Jg = - J "  s. 

Since none of the arcs in G~ 3~ is constrained by either flow or sym- 
metry, they represent nine distinct densities, giving the nine faces of the 
polytope p]31 which lives in six-dimensional Euclidean space. (We will not 
give the relationships between the densities and the correlations here; they 
are readily generalized from those given by Teubner ~2~ for k = 2.) 

Now we apply S symmetry, and seek disordered GSs. This means 
J4  ~ - J 5  = J 6  = 0 in ~ ' ;  hence the polyhedron sp]3~ is the three-dimensional 
"slice" of PC131 given by s4 = s5 = s6 = 0. The five arcs of SG~13~ give rise to five 
densities: 11_0=17+0--17.,.0; no_=no+  =nox; n + _ = n  + --- 77 !,.I,? ".., 17++= 

..12~. and noo. However only four of these are distinct, since the 1 l _ _  ~-~11xx , 

structure of SG~131 constrains no.,- = n,~ by conservation of flow. H e n c e  SpIi31 
is a polyhedron in 3D with four faces: it is a tetrahedron. The vertices of 
Sp~3~ are the four SCs of SGII31: (0), ( -k- ) = ( - ), ( q- - ), and ( 0 + )  = ( 0 - ) .  
The last is of course the D-pair, sharing the invariant node ,.,F'* = 0. Each 
of these SCs sets three of the four distinct densities to zero, hence shares 
d s= 3 of the 4(=n.c) faces o f  SPII3). In s coordinates, these vertices are, 
respectively, (0, 0, 0), (1, 1, 1), (1, - I ,  I), and (1/2,0,0).  The SCs ( 0 -  + ) 
and ( 0 + - )  of G~I 3~ a r e  not SCs of SG]3~; they lie on the edge in sP~13~ 
joining (0 + ) / ( 0 -  ) to ( + - ). This is a geometric version of decomposition 
(recall Fig. 2 and the associated discussion); one can verify graphically that 
( 0 -  + ) /(0+ - ) decomposes into ( 0 + ) / ( 0 - )  and ( +  - ). 

The (single) D-pair for this case is the lowest energy SC in the sub- 
volume bounded by the planes J i /2  + J2  q- J3 < 0, J i /2  - J2  -t- J3 < 0, and 
Ji >0.  For illustration, a representative point in this subvolume is 
.Jr = - ( a ' - )  + (a~a~+ ~) , that is, Ji = + 1, J ,  = 0, and J 3  = - -  1. For  this 
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Fig. 10, (a) G~3~; (b) SG~3~. In the latter, a pair of energetically distinct arcs connects tile 
S (k) node - / +  to itself; in general, G r has parallel arcs such as these for k>2,  and so is not 

a de Bruijn graph. 

Hami l ton ian  (or  any  o ther  in the subvolume) ,  undefected g round-s ta te  
conf igurat ions  are of  the form ...OxOxOxOxO .... where "x"  m a y  be, 
arbi t rar i ly ,  + or  - ;  and  the en t ropy  densi ty  at T = 0  is (In 2)/2. 

It wou ld  be of  some interest  to find an ana logous  n e i g h b o r h o o d  for 
the smalles t - r  Is ing ( k = 2 )  p r o b l e m  with d i so rdered  GSs: r = 5  for I 
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symmetry and r =  6 for S + I symmetry. This task, however, is considerably 
more tedious than the above simple example; hence we do not at tempt it 
here. 

7. ROBUSTNESS OF THE DISORDER 

We have defined ground states in such a way as to rule out disorder 
which may arise at some hypersurface at which there is a multiphase 
degeneracy, when that hypersurface is of lower dimension than the dimen- 
sion of H. That is, we seek ground states which do not require precise 
values of couplings; if such GSs are disordered, then the disorder is robust 
with respect to small variations (of range r) in the coupling constants of the 
Hamiltonian. Imposing this criterion enables us to focus our attention on 
a finite set of simple cycles of a graph (vertices of a polytope); this set gives 
us "all" the GSs for a given k and r. Such robust GSs are also more likely 
to be realized experimentally--since in general the couplings in H cannot 
be controlled to arbitrary precision in experiment. 

There are other criteria for robustness of a G S - - t h a t  is, other pertur- 
bations which can be considered. In this section we will briefly consider 
two further types of perturbation: interactions of range r ' > r  and tem- 
perature-driven fluctuations. For each such perturbation we wish to 
examine the stability of a disordered GS of XH~,.k~. 

7.1. Longer Ranged Interact ions 

We first consider interactions of range r ' >  i". Such interactions were 
considered to be strictly zero in our preceding arguments; we now consider 
them to be very small, but nonzero. Specifically, let us allow all 
(X-invariant) couplings of range r + l  to be small but nonzero. By our 
above logic, we now face a new problem, for which we must study the SCs 
of W;, ~k~ A spin configuration v r +  , or equivalently, the vertices of Xp~kj �9 - - r +  l "  

which is a GS configuration for XHf~ is then stable under the perturbation 
if and only if the same configuration is a GS configuration for xt4"~~ 

~ 2 4 7  

Given that xp~k~ is convex and that the projection (1"+ l ) ~ r  is a - - r +  I 

linear operator, one can show that any vertex v of Xp~.k~ is the projection 
of one or more vertices o~r x,~cklr,.+ ~. NOW assume that X =  0, i.e., we consider 
the generic case. In this case we have that the arc densities of each vertex 
of p~,k~ are uniquely determined (they are all 1/p or 0, where p is the period 
of the SC). This in turn determines the node densities, and hence the arc 
densities, at range r + 1. Thus we see that each vertex of pt.k~ has a single 
preimage in ,Vp~k~_,.§ under the projection. In other words, any SC of G~r k~ is 
also an SC of G ~k~ (as may be proved by simpler means). - - r + l  
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For the symmetry-constrained case X:#0, vertices of xp(,.k) can repre- 
sent multiple sets of arc densities (although they correspond to a unique set 
of distinct arc densities). This happens when the corresponding SC of XG(,.k) 
maps to a pair of SCs in G(,. k). Hence we consider a vertex v of Xp(.k) corre- 
sponding to a degenerate pair of SCs of G(,. k). Suppose that v has multiple 
preimages {v'} in x m k )  Then the correlations represented by v (with ~ r +  1 ' 

those of range r + 1 set of zero) lie, not on a vertex of xp,k) but rather ~ r + l '  

at the locus of degeneracy of the vertices {v'}. Therefore, v has multiple 
preimages only if interactions of range r + 1 reduce the degeneracy 
associated with v. 

Suppose the pair of SCs associated with v shares no nodes in G(,. ~') (so 
that we have SSB). Then the degeneracy of the spin configurations at v is 
subextensive (as discussed in Section 2), being generated entirely (that is, 
after counting the two periodic configurations) by defects of vanishing den- 
sity. This degeneracy will not be reduced by any symmetric perturbation of 
range r' > r. The vertex corresponding to such a pair will then have a single 
preimage in Xp,k) One can easily show that this latter vertex [in Xp(k) 1 - - r + l "  ~ r + l J  

corresponds to the same pair of SCs; hence all the GS spin configurations 
are stable to the perturbation. 

We now consider a D-pair in G~,. k~ corresponding to a single vertex v 
in xp~/,). If a D-pair shares n nodes in G~,. k~, it will share n -  1 nodes in 

- G ~k~ 1 When the number of shared _,.+ja ~k~ [and max(n m, 0) nodes in _,.+ .... . 
nodes in ~k)  is nonzero the D-pair remains a D-pair; the degeneracy is ~ r + l  

~ s  . V D ( k )  However, unchanged; and so v is the projection of a single vertex ot r , .+l .  
when the number of shared nodes reaches zero, the domain-wall energy is 
no longer exactly zero. For positive domain-wall energy, we have SSB: ~'( 
is minimized at a vertex v+ of Xp~k) representing a degenerate pair of - - r + l ,  

undefected periodic ground-state configurations (represented by, say, O,c 
and ~ ) ,  plus a set of defected configurations of vanishing defect density 
and entropy density. When the domain-wall energy is negative, the 
undefected GS is a regular crystal of domain walls, which appears in .vpc~-, - - r +  I 

as a vertex v. representing a single SC (O:C.-by-g) of period 2p. Both vertices 
v+ and v_ map to the single (D-pair) vertex v in XPt,.k)--since, up to inter- 
actions of range r, the domain-wall energy is exactly zero, and the con- 
figurations represented by v+ and v are degenerate. The ground-state 
configuratioffs corresponding to v+ and v have, however, a vanishing 
entropy density, whereas their single image v in pt.k) represents a set of con- 
figurations with finite entropy density. Therefore, almost all of these latter 
configurations are unstable under the perturbation. 

Hence we find that a D-pair of XH~,.k) is stable as a D-pair to perturba- 
tions of range r +  1 if and only if it includes more than one shared node. 
Our example in Section 6 illustrates the possible instability of a D-pair: the 
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vertex of sp~3), corresponding to the D-pair (0 + ) / ( 0 -  ) of G(I 3), appears 
as two vertices of sp(3) namely, the SSB pair (0 + )/(0 - ) and the domain- 
wall crystal ( 0 + 0 - ) .  This example is representative of all the D-pairs 
arising from S symmetry; since they always share a single node at range r, 
they are always unstable to small interactions of range r + 1. 

Problems with I symmetry allow for D-pairs with more than one 
shared node. (An example is the cycle 00000100110Ill0001011 and its 
/-partner, which share two nodes in G(62).) Such D-pairs are stable--as 
D-pairs-- to small perturbations of range r +  1, but of course are not 
stable--as D-pairs-- to perturbations of arbitrary range. 

Summarizing the above, we find that some spin configurations 
represented by a D-pair at range r always occur as GS configurations for 
any r ' > r .  However, the extensive entropy of the D-pair is not stable to 
arbitrary r; it is reduced to a vanishing entropy density by interactions of 
sufficient range to render the domain-wall energy nonzero. Specifically, 
D-pairs sharing n nodes at range r cease to be D-pairs at range r + n; at 
this range and beyond, the degeneracy of the remaining configurations is 
subextensive, and the GSs are periodic. 

7.2. Temperature 

We now consider the case that the temperature T is small but not 
zero. This case merits consideration since it is known that a small tem- 
perature can act analogously to the small couplings at r +  1 above. That is, 
a small temperature can select out a subset of the set of degenerate ground 
states such that there is a nonzero order parameter over the selected subset 
of states. This order parameter hence only vanishes at T exactly zero, and 
not in the limit T--)0 +. This kind of behavior has been called "order from 
disorder.,,~ ,21 

The (temperature-driven) selection comes about because those excita- 
tions which dominate at low T (due to low energy and/or high density of 
states) have significant overlap with ("select") only a subset of the 
degenerate ground states. The order parameter then appears because the 
selected subset may be distinguished from the nonselected subset; crudely 
speaking, only an ordered subset of the degenerate ground states gives rise 
to the dominant low-energy excitations. 

The D-pairs we have identified represent highly degenerate ground 
states. It is then natural to ask, might temperature select out, from this 
disordered set of ground states, an ordered subset? In other words, is the 
disorder unstable against a small perturbation in 77. 

Our answer is no: the disorder is stable to small T. The reasoning 
is simple. Every undefected GS configuration in the set represented by a 
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D-pair  consists of  a periodic array of  the shared nodes, with (arbitrarily) 
a structure s or its inverse g between the shared nodes�9 Since the spin states 
are discrete, the low-energy excitations are localized: they are the defects 
discussed in Section 2. A defect may  be viewed as replacing one intervening 
s or g with some other  spin sequence, not  necessarily of  the same length. 
Clearly, such excitations leave the remainder of  the chain as free to sample 
s or g as it was at T = 0 .  Hence there is no order  at low T that is not  
present at T =  0. 

An impor tant  element of  our  reasoning is the fact that  our  problem is 
one-dimensional.  Order  from disorder was shown to occur for discrete 
spins in two dimensions by Villain et  al. ~2~ 

8. D I S C U S S I O N  A N D  S U M M A R Y  

We summarize our  findings in Table I. Each X entry means that  there 
are D-pairs in GI,. kl arising from the the appropr ia te  types of  SCs in XG~k~. 

This in turn means that for the given r and k, the corresponding k-state 
problem has degenerate, disordered GSs, arising from X symmetry,  over a 
finite region of  coupl ing-parameter  space, without  any fine tuning (beyond 
that coming from the symmetry).  

Table I is striking in the near-ubiquity of  its entries, which stands in 
strong contrast  to the simple result of  Radin and Schulman. I~ Given that  
I symmetry  is ubiquitous as well, we might  expect disordered GSs for a 
number  of  interesting problems�9 However,  both  the present results and 
those of  RS remain somewhat  academic in the absence of  a convincing 

Table I. One-Dimensional k-State Models Which Allow for Disordered 
Ground States, with No Fine Tuning of Coupling Parameters Other Than That 

Demanded by Symmetry" 

r = l  2 3 4 5 6 -.. 

k=2  I 1 -.. 
3 S S , I  S , I  S , I  S , I  S , I  ... 
4 1 I I I I ... 
5 S S , I  S , I  S , I  S, 1 S , I  ... 
6 I I I I 1 ... 
�9 ~ ~ ~ ~ ~ ". " . .  

" Rows are indexed by the number of states k, and columns by the range r (in lattice con- 
stants) of the interactions. An entry is made whenever spin inversion (S) or spatial inversion 
(1) symmetry gives rise to one or more pairs of degenerate, periodic ground states, with zero 
surface tension between the two members of the pair. It is this combination (degeneracy plus 
zero surface tension) which allows for disordered ground states. 
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physical application. It may or may not be the case that the regions of 
parameter space giving disordered GSs are in general too "weird" (i.e., 
unphysical) to be visited by physical problems. Only further work can 
answer this question. The answer is, however, of considerable interest since 
it has relevance to the third law of thermodynamics: ~13j as noted above, a 
D-pair represents a ground state with extensive entropy (finite entropy 
density) at T= 0. 

We note finally that there is at least one physically motivated problem, 
namely the problem of stacking polytypes in crystals (see, e.g., ref. 14), 
which should be well modeled by an effective, one-dimensional Ising 
Hamiltonian with mediumJlS~ or long-range ~j6~ effective interactions 
between the stacking units (layers). Materials showing polytypism do show 
very long period and disordered structures, even down to low tem- 
peratures. It is likely that the disordered structures are metastable 
configurations, trapped at low temperature by a "rugged" energy surface. 
However, given our present results (and the S + I  symmetry of the 
problem), we believe that the possibility that some of the disordered struc- 
tures are ground states cannot be ruled out a priori; hence such a 
possibility deserves further study. 
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